
If you’d like to export this presentation to a PDF, do the following
This feature has been confirmed to work in Google Chrome and Firefox.


✍️ Describe the relationship between illiteracy rate and life expectancy shown in thescatterplot above.
🗣 Describe the relationship between high school graduation rate and income using the scatterplot above.
00:30
When discussing bivariate relationships, it is common to treat one variable as the explanatory and one as the response.
| Explanatory Variable | Response Variable |
|---|---|
|
|
If we are interested in trying to model (e.g., explain) life expectancy using illiteracy rate in 1970, which variable should we treat as the explanatory? Which variable should we treat as the response?

Answer in Poll Everywhere
pollev.com/erinhowardstats

The correlation coefficient, \(R\), measures the strength of a linear association between two quantitative variables.
The correlation between two quantitative variables will always be a value between -1 and 1.

For each of the scatterplots below, estimate the correlation coefficient for the relationship between the explanatory and response variables.
Simple linear regression is the statistical method for fitting a line to describe the relationship between two quantitative variables.
We want to find a line of the form \(\hat{y} = b_0 + b_1 x\)

What characteristics would the “line of best fit” have?
Open the link: https://beav.es/cTp (also found in the Quick Links module on Canvas called “SLR Demo”)
Try to find the line that best fits the data by adjusting the sliders below \(b_0\) and \(b_1\).
🗣 Compare your values of \(b_0\) and \(b_1\) to somewhere nearby. Discuss how you chose the values of \(b_0\) and \(b_1\).
02:00
The residual of an observation is the difference in the observed response, \(y_i\), and the predicted response based on the model fit, \(\hat{y}_i\).
\(e_i = y_i - \hat{y}_i\)

The least squares regression line (LSRL) is calculated by finding the line that minimizes the sum of the squared residuals.
When fitting the LSRL, we generally require:
Linearity - the data should indicate a linear trend
Nearly normal residuals - the residuals should be approximately normally distributed
Constant variability - the variability of the points around the line should be roughly constant
Independent observations
The above conditions are generally checked using a residual plot (coming up…)
If the above conditions are met, we can fit the LSRL using the following estimates \(b_1 = \frac{s_y}{s_x}R\) and \(b_0 = \overline{y} - b_1\overline{x}\)
In practice, we compute these estimates using R. Coming up…
\[ \hat{y} = b_0 + b_1 x\]
Interpreting the intercept estimate, \(b_0\): the expected value of the response variable when the explanatory variable is equal to 0.
Interpreting the slope estimate, \(b_1\): For a one unit increase in the explanatory variable, we expect the response to change by \(b_1\).
The LSRL that best fits the illiteracy rate vs. life expectancy data is
\[\hat{y} = 72.181 - 1.146x\] where \(\hat{y}\) is the predicted average life expectancy and \(x\) represents illiteracy rate.
Interpret the slope estimate from this LSRL:
Answer in Poll Everywhere (pollev.com/erinhowardstats)
00:45
\[\hat{y} = 72.181 - 1.146x\] where \(\hat{y}\) is the predicted average life expectancy and \(x\) represents illiteracy rate.
Predict the average life expectancy in 1970 for a state with an illiteracy rate of 1.4%.
\[\hat{y} = 72.181 - 1.146(1.4) = 70.577\]
Recall that the residual is difference in the observed response variable and the predicted response based on the model fit: \[e_i = y_i - \hat{y}_i\]
\[\hat{y} = 72.181 - 1.146x\] where \(\hat{y}\) is the predicted average life expectancy and \(x\) represents illiteracy rate.
Compute the residual for a state that had an illiteracy rate of 1.4% and an average life expectancy of 70.55.
Answer in Poll Everywhere (pollev.com/erinhowardstats)
\[e = 70.55 - 70.577 = -0.027\]
Recall that to fit the LSRL, we need four conditions to hold (see Least Squares Regression Line slide).
Some of these conditions can be easily checked using a residual plot.

Ideally, when fitting the LSRL, we see no obvious patterns in the residual plot.
If a pattern is visible, it might be an indication that one or more of the LSRL conditions are violated.


Linearity violated
Nearly normal residuals violated
Constant variability violated
Independence violated
\[\hat{y} = 72.181 - 1.146x\] where \(\hat{y}\) is the predicted average life expectancy and \(x\) represents illiteracy rate.

Are any of the LSRL conditions (linearity, normal residuals, constant variability, or independence) violated for the model that was fit for illiteracy vs. life expectancy?
# Open the tidyverse library
library(tidyverse)
# Import the dataset, first need to download the data from Canvas
state_30 <- read_csv(file.choose())
# Create a scatterplot of the Illiteracy and LifeExp variables
ggplot(data = state_30, aes(x = Illiteracy, y = LifeExp)) +
geom_point(color = "purple", size = 3) +
labs(y = "Life Expectancy (years)",
x = "Illiteracy Rate (% of population)",
title = "Illiteracy Rate vs. Life Expectancy",
subtitle = "for 30 US States in 1970") +
theme(axis.title = element_text(size = 18)) +
theme_bw() +
stat_smooth(method = "lm",
formula = y ~ x,
geom = "smooth",
se = FALSE,
color = "darkgreen")
## Calculate the correlation between illiteracy rate and life exp
state_30 %>% summarise(cor = cor(Illiteracy, LifeExp))
# Estimate intercept and slope for LSRL
lm(LifeExp ~ Illiteracy, data = state_30)